organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(Adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-[(*E*)-(2-hydroxybenzylidene)amino]-1*H*-1,2,4-triazole-5(4*H*)-thione

Ali A. El-Emam,^a‡ Mohamed A. Al-Omar,^a Abdul-Malek S. Al-Tamimi,^a Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 8 May 2012; accepted 10 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.052; wR factor = 0.125; data-to-parameter ratio = 17.9.

In the title compound, $C_{31}H_{38}N_6OS$, the conformation about the N=C [1.285 (2) Å] imine bond is *E*. The piperazine ring has a chair conformation and occupies a position almost perpendicular to the plane through the triazole ring; the benzene ring forms a dihedral angle of 31.95 (10)° with the triazole ring. Overall, the molecule has the shape of a flattened bowl. The hydroxy group is disordered over two positions. The major component has a site-occupancy factor of 0.762 (3) and forms an intramolecular $O-H \cdots N(\text{imine})$ bond to close an S(6) loop. The minor component of the disordered hydroxy group forms an $O-H \cdots N(\text{piperazine})$ hydrogen bond. These, along with $C-H \cdots S$ and $C-H \cdots N$ interactions, link molecules into a three-dimensional architecture.

Related literature

For the diverse biological activities of adamantane derivatives, see: Vernier *et al.* (1969); El-Emam *et al.* (2004); Kadi *et al.* (2007, 2010). For related structural studies, see: Kadi *et al.* (2011); El-Emam *et al.* (2012). For the synthesis of the precursor to the title compound, see: Al-Omar *et al.* (2010)

V = 2850.1 (3) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.10$ mm

11447 measured reflections

6530 independent reflections

4526 reflections with $I > 2\sigma(I)$

 $\mu = 0.15 \text{ mm}^-$

T = 100 K

 $R_{\rm int}=0.032$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{31}H_{38}N_6OS\\ M_r = 542.73\\ \text{Monoclinic, } P2_1/n\\ a = 10.6015 \ (5) \text{ Å}\\ b = 12.0283 \ (7) \text{ Å}\\ c = 22.7865 \ (12) \text{ Å}\\ \beta = 101.222 \ (4)^\circ \end{array}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\rm min} = 0.570, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 364 parameters $wR(F^2) = 0.125$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.28$ e Å $^{-3}$ 6530 reflections $\Delta \rho_{min} = -0.29$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1o\cdots N1$	0.84	1.89	2.632 (2)	147
$O1' - H1o' \cdots N5'$	0.84	1.92	2.714 (6)	158
$C13-H13A\cdots S1^{ii}$	0.99	2.68	3.650 (2)	166
C30−H30···N6 ⁱⁱⁱ	0.95	2.54	3.484 (3)	172
Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$	$-x + \frac{1}{2}, y - \frac{1}{2}$	$, -z + \frac{3}{2};$ (ii)	$-x + \frac{1}{2}, y + \frac{1}{2}, -$	$z + \frac{3}{2};$ (iii)

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2068).

o1766 El-Emam et al.

[‡] Additional correspondence author, e-mail: elemam5@hotmail.com.

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). *Molecules*, **15**, 2526–2550.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.
- El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 0657–0658.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). *Eur. J. Med. Chem.* 45, 5006–5011.
- Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, 03127.
- Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). *Toxicol. Appl. Pharmacol.* 15, 642–665.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o1766-o1767 [doi:10.1107/S1600536812021204]

3-(Adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-[(*E*)-(2-hydroxy-benzylidene)amino]-1*H*-1,2,4-triazole-5(4*H*)-thione

Ali A. El-Emam, Mohamed A. Al-Omar, Abdul-Malek S. Al-Tamimi, Seik Weng Ng and Edward R. T. Tiekink

Comment

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against the influenza (Vernier *et al.*, 1969) and HIV viruses (El-Emam *et al.*, 2004). Moreover, adamantane derivatives were reported to exhibit marked anti-bacterial and anti-inflammatory activities (Kadi *et al.*, 2007; Kadi *et al.*, 2010). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies (Kadi *et al.*, 2011; El-Emam *et al.*, 2012), we synthesized the title compound (I) as a potential chemotherapeutic agent. Herein, we describe the crystal and molecular structure of (I).

In (I), Fig. 1, the conformation about the N1=C25 [1.285 (2) Å] imine bond is *E*. The piperazinyl ring, having a chair conformation, projects almost normal to the plane through the triazole ring (r.m.s. deviation = 0.014 Å) as seen in the value of the N3—N4—C13—N5 torsion angle = -67.3 (2)°. By contrast, the benzene ring is splayed with respect to the triazole ring with the C25—N1—N2—C11 torsion angle being -153.92 (17)°; the dihedral angle between the rings is 31.95 (10)°. Overall, the molecule has the shape of a flattened bowl. As noted below, the hydroxy group is disordered over two positions. The major component is aligned to allow the formation of an intramolecular O—H···N(imine) bond to close an S(6) loop, Table 1.

In the crystal packing, the minor component of the disordered hydroxy group forms an O—H…N(piperazinyl) hydrogen bond; Table 1. Additional links between molecules are of the type C—H…S and C—H…N, Table 1, to consolidate the crystal packing, Fig. 2.

Experimental

A mixture of 3-(1-adamantyl)-4-(2-hydroxybenzylideneamino)-4*H*-1,2,4-triazole-5-thiol (709 mg, 2 mmol), prepared following literature methods (Al-Omar *et al.*, 2010), 1-benzylpiperazine (353 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min. when a clear solution was obtained. Stirring was continued for 12 h. at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added and the mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 413 mg (38%) of the title compound as colourless crystals. *M*.pt: 437–439 K. Crystals were obtained by slow evaporation of its CHCl₃:EtOH (1:1; 5 ml) solution at room temperature. ¹H NMR (DMSO-d₆, 500.13 MHz): δ 1.71 (br. s, 6H, adamantane-H), 2.04 (s, 3H, adamantane-H), 2.09 (s, 6H, adamantane-H), 2.37 (br. s, 4H, piperazine-H), 2.72 (s, 4H, piperazine-H), 3.49 (s, 2H, PhCH₂), 5.16 (s, 2H, CH₂), 6.98–7.03 (m, 2H, Ar—H), 7.23–7.32 (m, 5H, Ar—H), 7.44–7.47 (m, 2H, Ar—H), 9.85 (s, 1H, CH= N), 10.50 (br. s, 1H, OH) p.p.m. ¹³C NMR (DMSO-d₆, 125.76 MHz): δ 27.18, 34.73, 35.92, 38.10 (adamantane-C), 49.93, 52.47 (piperazine-C), 62.08 (PhCH₂), 68.69 (CH₂),

116.77, 118.28, 119.80, 126.68, 126.85, 128.09, 128.82, 134.44, 138.01, 158.56 (Ar—C), 154.20 (triazole C-5), 162.01 p.p.m.

Refinement

The H-atoms were placed in calculated positions $[O-H = 0.84 \text{ Å and } C-H = 0.95 \text{ to } 1.00 \text{ Å}, U_{iso}(H) = 1.2-1.5U_{eq}(O,C)]$ and were included in the refinement in the riding model approximation. The hydroxy group was disordered over two positions. Each component was refined independently and the major component has a site occupancy factor = 0.762 (3). A reflection, *i.e.* (12 2 8), was omitted from the final cycles of refinement owing to poor agreement.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view in projection down the *b* axis of the unit-cell contents for (I). The O—H \cdots S, C—H \cdots S and C—H \cdots N are shown as blue, orange, and purple dashed lines, respectively.

3-(Adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-[(*E*)-(2- hydroxybenzylidene)amino]-1*H*-1,2,4-triazole-5(4*H*)-thione

Crystal data	
$C_{31}H_{38}N_6OS$	$\beta = 101.222 \ (4)^{\circ}$
$M_r = 542.73$	V = 2850.1 (3) Å ³
Monoclinic, $P2_1/n$	Z = 4
Hall symbol: -P 2yn	F(000) = 1160
a = 10.6015 (5) Å	$D_{\rm x} = 1.265 {\rm ~Mg} {\rm ~m}^{-3}$
b = 12.0283 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 22.7865 (12) Å	Cell parameters from 3530 reflections

 $\theta = 2.3-27.5^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 100 K

Data collection

Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector	$T_{\min} = 0.570, T_{\max} = 1.000$ 11447 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	6530 independent reflections 4526 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.032$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^\circ, \ \theta_{\text{min}} = 2.3^\circ$ $h = -13 \rightarrow 9$
Absorption correction: multi scan	$k = -10 \longrightarrow 15$
(<i>CrysAlis PRO</i> ; Agilent, 2011)	$l = -20 \rightarrow 29$
Refinement	
Refinement on F ²	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
S = 1.02	H-atom parameters constrained
6530 reflections	$w = 1/[\sigma^2(F_o^2) + (0.042P)^2 + 0.843P]$
364 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Prism, colourless

 $0.40 \times 0.40 \times 0.10 \text{ mm}$

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.26003 (5)	0.62548 (5)	0.73271 (3)	0.03659 (16)	
O1	0.67165 (14)	0.49724 (17)	0.61888 (8)	0.0329 (6)	0.762 (3)
H1o	0.6498	0.5466	0.6410	0.049*	0.762 (3)
O1′	0.2282 (5)	0.4574 (5)	0.5670 (3)	0.0324 (18)	0.238 (3)
H10'	0.1859	0.4049	0.5780	0.049*	0.238 (3)
N1	0.51345 (13)	0.62441 (13)	0.66474 (7)	0.0240 (4)	
N2	0.48195 (13)	0.70959 (13)	0.70132 (7)	0.0222 (3)	
N3	0.51922 (14)	0.86006 (14)	0.75723 (7)	0.0261 (4)	
N4	0.40900 (13)	0.80618 (14)	0.76589 (7)	0.0265 (4)	
N5	0.41461 (14)	0.82682 (15)	0.87387 (7)	0.0280 (4)	
N6	0.61744 (15)	0.77152 (15)	0.97143 (7)	0.0307 (4)	
C1	0.68951 (16)	0.82020 (17)	0.69971 (8)	0.0229 (4)	
C2	0.74105 (17)	0.93454 (18)	0.72398 (9)	0.0290 (4)	
H2A	0.6806	0.9936	0.7061	0.035*	
H2B	0.7479	0.9366	0.7679	0.035*	
C3	0.87413 (18)	0.95560 (19)	0.70855 (9)	0.0351 (5)	
H3	0.9070	1.0298	0.7245	0.042*	

C4	0.8622 (2)	0.9539 (2)	0.64047 (9)	0.0386 (5)
H4A	0.8029	1.0133	0.6221	0.046*
H4B	0.9474	0.9677	0.6302	0.046*
C5	0.81110 (19)	0.84063 (19)	0.61607 (9)	0.0348 (5)
Н5	0.8038	0.8395	0.5716	0.042*
C6	0.67807 (17)	0.82016 (18)	0.63125 (8)	0.0278 (4)
H6A	0.6439	0.7477	0.6146	0.033*
H6B	0.6177	0.8792	0.6132	0.033*
C7	0.78629 (16)	0.73016 (18)	0.72866 (9)	0.0281 (4)
H7A	0.7946	0.7321	0.7727	0.034*
H7B	0.7543	0.6557	0.7144	0.034*
C8	0.91771 (17)	0.7508 (2)	0.71237 (10)	0.0364 (5)
H8	0.9793	0.6915	0.7304	0.044*
C9	0.90309 (18)	0.7490 (2)	0.64414 (10)	0.0380 (5)
H9A	0.9881	0.7602	0.6332	0.046*
H9B	0.8695	0.6758	0.6285	0.046*
C10	0.96774 (19)	0.8648 (2)	0.73648 (10)	0.0388 (6)
H10A	0.9768	0.8661	0.7805	0.047*
H10B	1.0534	0.8785	0.7267	0.047*
C11	0.56314 (16)	0.79885 (16)	0.71860 (8)	0.0231 (4)
C12	0.38254 (16)	0.71301 (17)	0.73315 (8)	0.0261 (4)
C13	0.34350 (17)	0.84426 (19)	0.81387 (9)	0.0301 (5)
H13A	0.3250	0.9247	0.8083	0.036*
H13B	0.2601	0.8051	0.8095	0.036*
C14	0.52571 (18)	0.90045 (18)	0.89159 (9)	0.0335 (5)
H14A	0.4996	0.9786	0.8827	0.040*
H14B	0.5932	0.8815	0.8687	0.040*
C15	0.5775 (2)	0.88674 (19)	0.95780 (10)	0.0386 (5)
H15A	0.6520	0.9369	0.9703	0.046*
H15B	0.5103	0.9075	0.9805	0.046*
C16	0.50592 (17)	0.6981 (2)	0.95405 (9)	0.0339 (5)
H16A	0.4395	0.7170	0.9775	0.041*
H16B	0.5323	0.6199	0.9628	0.041*
C17	0.45078 (17)	0.71111 (18)	0.88788 (9)	0.0298 (5)
H17A	0.5154	0.6875	0.8644	0.036*
H17B	0.3742	0.6628	0.8766	0.036*
C18	0.6755 (2)	0.7621 (2)	1.03506 (9)	0.0417 (6)
H18A	0.6078	0.7740	1.0588	0.050*
H18B	0.7399	0.8220	1.0455	0.050*
C19	0.74004 (17)	0.65195 (19)	1.05285 (9)	0.0310 (5)
C20	0.75362 (17)	0.6155 (2)	1.11188 (9)	0.0344 (5)
H20	0.7175	0.6578	1.1397	0.041*
C21	0.81892 (19)	0.5186 (2)	1.13025 (9)	0.0405 (6)
H21	0.8286	0.4956	1.1708	0.049*
C22	0.87039 (19)	0.4547 (2)	1.09039 (10)	0.0410 (6)
H22	0.9145	0.3875	1.1031	0.049*
C23	0.85679 (18)	0.4899 (2)	1.03140 (10)	0.0382 (5)
H23	0.8914	0.4465	1.0035	0.046*
C24	0.79293 (18)	0.5884 (2)	1.01311 (9)	0.0347 (5)

H30 C31	0.6669	0.3317	0.5508	0.041*	
C30	0.58288 (19)	0.35642 (19)	0.55309 (9)	0.0341 (5)	
H29	0.4883	0.2441	0.4944	0.044*	
C29	0.47679 (19)	0.3037 (2)	0.52021 (9)	0.0370 (5)	
H28	0.2811	0.3001	0.5013	0.043*	
C28	0.35374 (19)	0.3367 (2)	0.52428 (9)	0.0359 (5)	
H27	0.2529	0.4435	0.5654	0.034*	0.762 (3)
C27	0.33739 (17)	0.42259 (18)	0.56174 (8)	0.0283 (5)	
C26	0.44301 (16)	0.48029 (17)	0.59477 (8)	0.0240 (4)	
H25	0.3335	0.5914	0.6343	0.030*	
C25	0.41941 (16)	0.57102 (17)	0.63287 (8)	0.0248 (4)	
H24	0.7854	0.6125	0.9729	0.042*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0313 (3)	0.0351 (3)	0.0467 (3)	-0.0086 (2)	0.0159 (2)	-0.0070 (3)
01	0.0223 (9)	0.0354 (13)	0.0382 (11)	-0.0003 (8)	-0.0007 (7)	-0.0151 (10)
O1′	0.022 (3)	0.035 (4)	0.039 (4)	-0.011 (3)	0.001 (2)	0.004 (3)
N1	0.0281 (8)	0.0193 (9)	0.0243 (8)	0.0006 (7)	0.0045 (6)	-0.0031 (7)
N2	0.0220 (7)	0.0188 (9)	0.0253 (8)	0.0006 (6)	0.0035 (6)	-0.0023 (7)
N3	0.0268 (8)	0.0241 (10)	0.0272 (8)	0.0007 (7)	0.0049 (6)	-0.0011 (8)
N4	0.0265 (8)	0.0235 (10)	0.0303 (9)	0.0012 (7)	0.0077 (6)	-0.0013 (8)
N5	0.0276 (8)	0.0261 (10)	0.0319 (9)	0.0049 (7)	0.0098 (6)	-0.0022 (8)
N6	0.0379 (9)	0.0291 (11)	0.0245 (8)	0.0028 (8)	0.0045 (6)	-0.0043 (8)
C1	0.0238 (9)	0.0221 (11)	0.0226 (9)	-0.0035 (8)	0.0043 (7)	-0.0013 (8)
C2	0.0367 (10)	0.0246 (11)	0.0257 (10)	-0.0061 (9)	0.0060 (8)	-0.0048 (9)
C3	0.0399 (11)	0.0299 (13)	0.0362 (12)	-0.0135 (9)	0.0090 (8)	-0.0107 (10)
C4	0.0456 (12)	0.0371 (14)	0.0355 (12)	-0.0161 (10)	0.0141 (9)	-0.0040 (11)
C5	0.0422 (11)	0.0376 (14)	0.0274 (11)	-0.0156 (10)	0.0133 (8)	-0.0103 (10)
C6	0.0323 (10)	0.0268 (12)	0.0236 (10)	-0.0056 (8)	0.0038 (7)	-0.0013 (9)
C7	0.0250 (9)	0.0281 (12)	0.0294 (10)	-0.0006 (8)	0.0006 (7)	0.0009 (9)
C8	0.0239 (10)	0.0380 (14)	0.0457 (13)	-0.0016 (9)	0.0028 (8)	-0.0058 (11)
C9	0.0290 (10)	0.0391 (14)	0.0495 (13)	-0.0104 (9)	0.0166 (9)	-0.0165 (12)
C10	0.0299 (10)	0.0471 (16)	0.0383 (12)	-0.0105 (10)	0.0041 (8)	-0.0063 (12)
C11	0.0257 (9)	0.0207 (11)	0.0214 (9)	0.0021 (8)	0.0008 (7)	0.0022 (8)
C12	0.0242 (9)	0.0266 (12)	0.0274 (10)	0.0033 (8)	0.0052 (7)	0.0021 (9)
C13	0.0282 (10)	0.0295 (12)	0.0340 (11)	0.0085 (9)	0.0094 (8)	-0.0026 (10)
C14	0.0407 (11)	0.0219 (12)	0.0376 (12)	0.0025 (9)	0.0068 (8)	-0.0055 (10)
C15	0.0472 (12)	0.0302 (13)	0.0372 (12)	0.0036 (10)	0.0055 (9)	-0.0079 (11)
C16	0.0319 (10)	0.0371 (14)	0.0354 (11)	0.0039 (9)	0.0134 (8)	0.0050 (11)
C17	0.0265 (9)	0.0278 (12)	0.0356 (11)	-0.0005 (8)	0.0074 (8)	-0.0021 (10)
C18	0.0562 (13)	0.0440 (16)	0.0245 (11)	0.0063 (11)	0.0072 (9)	-0.0062 (11)
C19	0.0303 (10)	0.0360 (13)	0.0270 (10)	-0.0021 (9)	0.0061 (7)	-0.0032 (10)
C20	0.0299 (10)	0.0482 (15)	0.0255 (10)	-0.0077 (10)	0.0064 (8)	-0.0057 (11)
C21	0.0436 (12)	0.0486 (16)	0.0270 (11)	-0.0115 (11)	0.0015 (9)	0.0031 (11)
C22	0.0397 (12)	0.0388 (15)	0.0405 (13)	-0.0021 (10)	-0.0019 (9)	0.0027 (12)

supplementary materials

C23	0.0368 (11)	0.0407 (15)	0.0376 (12)	-0.0005 (10)	0.0088 (9)	-0.0040 (11)
C24	0.0377 (11)	0.0416 (14)	0.0262 (10)	-0.0008 (10)	0.0097 (8)	-0.0006 (10)
C25	0.0248 (9)	0.0248 (11)	0.0235 (9)	-0.0002 (8)	0.0020 (7)	0.0033 (9)
C26	0.0292 (9)	0.0205 (11)	0.0217 (9)	-0.0020 (8)	0.0037 (7)	0.0014 (8)
C27	0.0283 (10)	0.0304 (12)	0.0254 (10)	-0.0076 (8)	0.0035 (7)	0.0021 (9)
C28	0.0397 (11)	0.0362 (13)	0.0307 (11)	-0.0144 (10)	0.0041 (8)	-0.0065 (11)
C29	0.0477 (12)	0.0324 (13)	0.0322 (11)	-0.0070 (10)	0.0107 (9)	-0.0106 (11)
C30	0.0372 (11)	0.0314 (13)	0.0344 (11)	-0.0005 (9)	0.0090 (8)	-0.0060 (10)
C31	0.0300 (10)	0.0258 (11)	0.0259 (10)	-0.0032 (8)	0.0026 (7)	-0.0008 (9)

Geometric parameters (Å, °)

S1—C12	1.670 (2)	С9—Н9А	0.9900
O1—C31	1.338 (2)	С9—Н9В	0.9900
O1—H10	0.8400	C10—H10A	0.9900
O1′—C27	1.259 (6)	C10—H10B	0.9900
O1'—H1o'	0.8400	C13—H13A	0.9900
N1—C25	1.285 (2)	C13—H13B	0.9900
N1—N2	1.402 (2)	C14—C15	1.511 (3)
N2—C11	1.384 (2)	C14—H14A	0.9900
N2—C12	1.391 (2)	C14—H14B	0.9900
N3—C11	1.301 (2)	C15—H15A	0.9900
N3—N4	1.384 (2)	C15—H15B	0.9900
N4—C12	1.345 (3)	C16—C17	1.515 (3)
N4—C13	1.477 (2)	C16—H16A	0.9900
N5—C13	1.442 (2)	C16—H16B	0.9900
N5—C17	1.462 (3)	C17—H17A	0.9900
N5—C14	1.466 (3)	С17—Н17В	0.9900
N6—C18	1.465 (3)	C18—C19	1.509 (3)
N6—C15	1.465 (3)	C18—H18A	0.9900
N6—C16	1.467 (3)	C18—H18B	0.9900
C1—C11	1.507 (2)	C19—C24	1.384 (3)
C1—C6	1.541 (3)	C19—C20	1.395 (3)
C1—C2	1.542 (3)	C20—C21	1.378 (3)
C1—C7	1.548 (3)	С20—Н20	0.9500
C2—C3	1.540 (3)	C21—C22	1.381 (3)
C2—H2A	0.9900	C21—H21	0.9500
C2—H2B	0.9900	C22—C23	1.390 (3)
C3—C10	1.529 (3)	C22—H22	0.9500
C3—C4	1.532 (3)	C23—C24	1.387 (3)
С3—Н3	1.0000	С23—Н23	0.9500
C4—C5	1.530 (3)	C24—H24	0.9500
C4—H4A	0.9900	C25—C26	1.446 (3)
C4—H4B	0.9900	C25—H25	0.9500
С5—С9	1.527 (3)	C26—C27	1.405 (3)
C5—C6	1.536 (2)	C26—C31	1.407 (2)
С5—Н5	1.0000	C27—C28	1.373 (3)
С6—Н6А	0.9900	С27—Н27	0.9500
С6—Н6В	0.9900	C28—C29	1.384 (3)
С7—С8	1.530 (3)	C28—H28	0.9500

С7—Н7А	0.9900	C29—C30	1.378 (3)
С7—Н7В	0.9900	С29—Н29	0.9500
C8—C10	1.533 (3)	C30—C31	1.381 (3)
C8—C9	1.532 (3)	С30—Н30	0.9500
С8—Н8	1.0000	С31—Н31	0.9500
C31—O1—H1o	109.5	N2—C12—S1	130.17 (15)
С27—О1′—Н1о′	109.5	N5—C13—N4	114.97 (15)
C25—N1—N2	116.93 (15)	N5—C13—H13A	108.5
C11—N2—C12	108.71 (15)	N4—C13—H13A	108.5
C11—N2—N1	121.94 (14)	N5—C13—H13B	108.5
C12—N2—N1	128.61 (15)	N4—C13—H13B	108.5
C11—N3—N4	104.76 (15)	H13A—C13—H13B	107.5
C12—N4—N3	113.70 (14)	N5-C14-C15	109.01 (18)
C12—N4—C13	126.25 (16)	N5—C14—H14A	109.9
N3—N4—C13	119.47 (16)	C15—C14—H14A	109.9
C13—N5—C17	114.32 (17)	N5—C14—H14B	109.9
C13—N5—C14	114.64 (17)	C15—C14—H14B	109.9
C17—N5—C14	110.63 (15)	H14A—C14—H14B	108.3
C18—N6—C15	109.38 (17)	N6-C15-C14	110.42 (18)
C18—N6—C16	112.46 (17)	N6—C15—H15A	109.6
C15—N6—C16	109.15 (16)	C14—C15—H15A	109.6
C11—C1—C6	112.95 (14)	N6—C15—H15B	109.6
C11—C1—C2	108.80 (15)	C14—C15—H15B	109.6
C6—C1—C2	108.42 (16)	H15A—C15—H15B	108.1
C11—C1—C7	108.15 (15)	N6-C16-C17	109.94 (17)
C6-C1-C7	110.25 (16)	N6—C16—H16A	109.7
C2-C1-C7	108.17 (15)	C17—C16—H16A	109.7
C3—C2—C1	109.95 (16)	N6—C16—H16B	109.7
C3—C2—H2A	109.7	C17—C16—H16B	109.7
C1—C2—H2A	109.7	H16A—C16—H16B	108.2
C3—C2—H2B	109.7	N5-C17-C16	110.46 (18)
C1 - C2 - H2B	109.7	N5-C17-H17A	109.6
$H^2A - C^2 - H^2B$	108.2	C16—C17—H17A	109.6
C10-C3-C4	109.31 (18)	N5-C17-H17B	109.6
C10 - C3 - C2	109.67 (18)	C16—C17—H17B	109.6
C4-C3-C2	109.30 (16)	H17A-C17-H17B	109.0
C10-C3-H3	109.5	N6-C18-C19	114 52 (18)
C4-C3-H3	109.5	N6-C18-H18A	108.6
$C_2 - C_3 - H_3$	109.5	C19— $C18$ — $H18A$	108.6
$C_{2} = C_{3} = C_{3}$	109.49 (18)	N6-C18-H18B	108.6
$C_5 - C_4 - H_4 A$	109.8	C19— $C18$ — $H18B$	108.6
$C_3 - C_4 - H_4 A$	109.8	H18A - C18 - H18B	103.0
$C_5 - C_4 - H_{4B}$	109.8	C_{24} C_{19} C_{20}	1186(2)
C3—C4—H4B	109.8	C_{24} C_{19} C_{18}	121 94 (19)
H_{A} C_{A} H_{A}	108.2	C_{20} C_{19} C_{18}	119 41 (19)
C9_C5_C4	109 74 (17)	C_{21} C_{20} C_{19} C_{19}	120 7 (2)
$C_{2} = C_{2} = C_{4}$	109.24 (17)	$C_{21} = C_{20} = H_{20}$	1197
$C_{1} = C_{2} = C_{3}$	$109.2 \pm (17)$ 100.68 (17)	$C_{10} = C_{20} = H_{20}$	110.7
0	107.00 (17)	-17020 - 1120	117./

С9—С5—Н5	109.4	C20—C21—C22	120.7 (2)
C4—C5—H5	109.4	C20—C21—H21	119.6
С6—С5—Н5	109.4	C22—C21—H21	119.6
C5—C6—C1	109.46 (15)	C21—C22—C23	119.1 (2)
С5—С6—Н6А	109.8	C21—C22—H22	120.5
С1—С6—Н6А	109.8	C23—C22—H22	120.5
С5—С6—Н6В	109.8	C24—C23—C22	120.2 (2)
С1—С6—Н6В	109.8	С24—С23—Н23	119.9
H6A—C6—H6B	108.2	С22—С23—Н23	119.9
C8—C7—C1	110.02 (17)	C19—C24—C23	120.7 (2)
С8—С7—Н7А	109.7	C19—C24—H24	119.6
C1—C7—H7A	109.7	C23—C24—H24	119.6
С8—С7—Н7В	109.7	N1—C25—C26	120.69 (16)
C1—C7—H7B	109.7	N1—C25—H25	119.7
H7A—C7—H7B	108.2	С26—С25—Н25	119.7
C7—C8—C10	109.03 (17)	C27—C26—C31	117.66 (18)
C7—C8—C9	109.07 (15)	C27—C26—C25	118.77 (16)
C10—C8—C9	109.61 (19)	C31—C26—C25	123.56 (16)
С7—С8—Н8	109.7	O1′—C27—C28	122.6 (3)
C10—C8—H8	109.7	01'-C27-C26	115.9 (3)
C9—C8—H8	109.7	$C_{28} = C_{27} = C_{26}$	121.40 (18)
$C_{5} - C_{9} - C_{8}$	110 21 (18)	C28—C27—H27	119.3
C5-C9-H9A	109.6	С26—С27—Н27	119.3
C8-C9-H9A	109.6	C_{27} C_{28} C_{29}	119.47 (18)
C5-C9-H9B	109.6	$C_{27} = C_{28} = H_{28}$	120.3
C8-C9-H9B	109.6	C_{29} C_{28} H_{28}	120.3
$H_{0}A = C_{0} = H_{0}B$	108.1	$C_{29} = C_{20} = C_{28}$	120.3 120.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1	C_{30} C_{29} H_{29}	120.8 (2)
C_{3} C_{10} H_{10A}	109.30 (10)	$C_{20} = C_{20} = H_{20}$	119.0
C_{3} C_{10} H_{10A}	109.7	$C_{20} = C_{20} = C_{20}$	119.0
C_{3} C_{10} H_{10} R_{10}	109.7	$C_{31} = C_{30} = C_{23}$	119.85 (19)
C_{3} C_{10} H_{10} C_{10} H_{10} C_{10} H_{10} C_{10} H_{10} $H_$	109.7	C_{20} C_{20} H_{20}	120.1
	109.7	$C_{29} = C_{30} = H_{30}$	120.1
HIUA—CIU—HIUB	108.2	01 - 031 - 030	118.39 (18)
N3 - C11 - N2	110.28 (10)	01 - 031 - 020	120.87 (19)
N3 - CII - CI	123.49 (17)	$C_{30} = C_{31} = C_{26}$	120.74 (17)
	126.09 (17)	C30—C31—H31	119.6
N4—C12—N2	102.50 (15)	C26—C31—H31	119.6
N4—C12—S1	127.33 (14)		
C25—N1—N2—C11	-153.92 (17)	C11—N2—C12—N4	1.88 (19)
C25—N1—N2—C12	37.0 (3)	N1—N2—C12—N4	172.08 (16)
C11—N3—N4—C12	-0.5(2)	C11—N2—C12—S1	-177.78 (15)
C11—N3—N4—C13	171.33 (16)	N1—N2—C12—S1	-7.6 (3)
C11—C1—C2—C3	176.65 (15)	C17—N5—C13—N4	-57.1 (2)
C6—C1—C2—C3	-60.2 (2)	C14—N5—C13—N4	72.1 (2)
C7-C1-C2-C3	59.4 (2)	C12—N4—C13—N5	103.4 (2)
C1 - C2 - C3 - C10	-59.7 (2)	N3—N4—C13—N5	-67.3(2)
C1 - C2 - C3 - C4	60.1 (2)	C13—N5—C14—C15	170.69 (16)
C10-C3-C4-C5	60.4(2)	C17 - N5 - C14 - C15	-58 3 (2)
	00.T (2)	017 115 017 -015	50.5 (2)

C2—C3—C4—C5	-59.7 (2)	C18—N6—C15—C14	176.07 (17)
C3—C4—C5—C9	-59.7 (2)	C16—N6—C15—C14	-60.5 (2)
C3—C4—C5—C6	60.3 (2)	N5-C14-C15-N6	60.0 (2)
C9—C5—C6—C1	59.5 (2)	C18—N6—C16—C17	-179.65 (17)
C4—C5—C6—C1	-60.8 (2)	C15—N6—C16—C17	58.8 (2)
C11—C1—C6—C5	-179.12 (17)	C13—N5—C17—C16	-171.07 (15)
C2-C1-C6-C5	60.2 (2)	C14—N5—C17—C16	57.7 (2)
C7—C1—C6—C5	-58.0 (2)	N6-C16-C17-N5	-57.8 (2)
C11—C1—C7—C8	-178.13 (16)	C15—N6—C18—C19	-170.56 (18)
C6—C1—C7—C8	57.9 (2)	C16—N6—C18—C19	68.0 (2)
C2C1C7C8	-60.5 (2)	N6-C18-C19-C24	28.6 (3)
C1C7C8C10	61.0 (2)	N6-C18-C19-C20	-155.13 (18)
C1—C7—C8—C9	-58.6 (2)	C24—C19—C20—C21	0.4 (3)
C4—C5—C9—C8	58.9 (2)	C18—C19—C20—C21	-176.06 (19)
C6—C5—C9—C8	-61.4 (2)	C19—C20—C21—C22	-1.1 (3)
C7—C8—C9—C5	60.9 (2)	C20—C21—C22—C23	0.7 (3)
C10—C8—C9—C5	-58.4 (2)	C21—C22—C23—C24	0.3 (3)
C4—C3—C10—C8	-60.2 (2)	C20—C19—C24—C23	0.7 (3)
C2—C3—C10—C8	59.6 (2)	C18—C19—C24—C23	177.0 (2)
C7—C8—C10—C3	-60.3 (2)	C22—C23—C24—C19	-1.1 (3)
C9—C8—C10—C3	59.1 (2)	N2—N1—C25—C26	-178.69 (16)
N4—N3—C11—N2	1.70 (19)	N1-C25-C26-C27	178.57 (18)
N4—N3—C11—C1	-174.38 (16)	N1-C25-C26-C31	-0.6 (3)
C12—N2—C11—N3	-2.4 (2)	C31—C26—C27—O1′	-179.0 (3)
N1—N2—C11—N3	-173.33 (15)	C25—C26—C27—O1'	1.8 (4)
C12—N2—C11—C1	173.59 (17)	C31—C26—C27—C28	-1.6 (3)
N1—N2—C11—C1	2.6 (3)	C25—C26—C27—C28	179.19 (19)
C6-C1-C11-N3	-130.8 (2)	O1′—C27—C28—C29	179.2 (4)
C2-C1-C11-N3	-10.4 (2)	C26—C27—C28—C29	2.0 (3)
C7—C1—C11—N3	106.9 (2)	C27—C28—C29—C30	-0.3 (3)
C6-C1-C11-N2	53.8 (3)	C28—C29—C30—C31	-1.8 (3)
C2-C1-C11-N2	174.19 (17)	C29—C30—C31—O1	-177.4 (2)
C7—C1—C11—N2	-68.5 (2)	C29—C30—C31—C26	2.2 (3)
N3—N4—C12—N2	-0.9 (2)	C27—C26—C31—O1	179.11 (19)
C13—N4—C12—N2	-172.05 (16)	C25—C26—C31—O1	-1.7 (3)
N3—N4—C12—S1	178.77 (14)	C27—C26—C31—C30	-0.5 (3)
C13—N4—C12—S1	7.6 (3)	C25—C26—C31—C30	178.67 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H10···N1	0.84	1.89	2.632 (2)	147
O1'—H1o'…N5 ⁱ	0.84	1.92	2.714 (6)	158
C13—H13 <i>A</i> ···S1 ⁱⁱ	0.99	2.68	3.650 (2)	166
C30—H30…N6 ⁱⁱⁱ	0.95	2.54	3.484 (3)	172

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+3/2; (ii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iii) -*x*+3/2, *y*-1/2, -*z*+3/2.